"Nanomaterials are closest thing we have to real-life 'superheroes'"

Horizon-Interview with Prof Valeria Nicolosi

10. 8. 2017 | Utilising the superhero properties of materials around an atom thick could revolutionise how we store energy in electronic devices, according to Valeria Nicolosi, professor of nanomaterials and advanced microscopy at Trinity College Dublin, Ireland.
Prof. Valeria Nicolosi
Bild vergrößern
(© Courtesy of AMBER, Trinity College Dublin)

Prof. Valeria Nicolosi

Horizon: You're the coordinator of the 3D2DPrint project where you combined different nanomaterials to print energy storage devices – what sort of impact could this technology have in the future?

Prof. Nicolosi: Imagine 3D printing a shell of a phone with the battery already built in, one that lasts 1 000 times longer so you won't have to replace it for years. The same goes for the plastic shell of a laptop and even a medical device.

This could ultimately lead to batteries that recharge in a few minutes, that can come in any shape or size and can be disguised within any type of material – whether in a piece of clothing or the hard plastic shell of a device. These are revolutionary batteries that could even be implanted within your body to power a device that monitors your health.

How did you develop this nanotechnology?

This is a European Research Council (ERC) project that follows on from another ERC one called 2DNanoCaps, that finished in September last year. Both projects are in relation to the use of 2D nanomaterials, so the flattest materials known to man. 2DNanoCaps was very, very successful and we learnt a lot of things. Most notably, we learnt how to down-select the number of materials-of-interest, or select those with the most interesting properties – there are more than 500 different materials that are only one atom thick and they all possess different properties.

I like to compare these nanomaterials to a zoo where each one of them is classified into species. The same way you have tens of millions of different types of insects or reptiles, you also have numerous different classes of nanomaterials only one-atom-thick.

So what nanomaterials are you looking at now?

Graphene, for example, is one of the materials we use. Although graphene itself would be very poor, for example, in storing energy ... it's very conductive and a very good material to help the flow of current into a battery. Our technology is not based on one material only, it's based on what we called hybrid technology so we combine many of these materials and take the best of many worlds.

At the EuroNanoForum in Malta (21 June), I made the comparison that each one of these materials is like a superhero. Each one of them has a superpower that is very distinctive and different from the other one. You have a superhero who is fast or stretchable, and the same goes for nanomaterials. But it is impossible to find one material to have all the properties you need to build a durable and efficient battery. So we take several of them, each with their own particular property, and make a battery that is a hybrid. By doing that we get the best of many worlds.

How do you combine these nanomaterials into something like a battery?

Imagine you have a thick book made of many, many pages – this is your raw material, or crystal, your starting point, and what you want to end up with is a liquid solution that contains (the information from) the pages of that book, and that's what we do. We select a solvent (a dissolving liquid), put the crystal in the liquid, then we mix it very energetically so the liquid gets caught between the different layers of the crystal, or pages, and then we separate them. Then you end up with a liquid with millions and millions of these specific nanomaterials. We call these liquids ‘inks' and that's how we print them.

Are there other applications for this 3D printing nanotechnology?

These ultra-thin nanomaterials have so many different properties that you can think about many different applications. We have had quite a range of partners over the years and made progress in a range of different fields, not only in energy storage. We have partnered with JVCKENWOOD for using these nanomaterials to reinforce cellulose-based paper to make loudspeakers that are stronger and get a better sound. We have partnered with SABMiller that produce beer. Their aim was to sell beer in plastic bottles as opposed to glass bottles. The reason for this is that selling beer in plastic bottles would reduce expenses on transport and produce less CO2.

The problem there is that they haven't been able to sell beer in plastic bottles until now because the shelf life would only be a few weeks. The reason is that the CO2 slowly escapes the bottle, there is a diffusion of gas, while this isn't a problem for other fizzy drinks like soda, for beer this diffusion of gas changes the taste of beer a lot and would reduce their consumer base. We have developed a way to use these nanomaterials to function as gas barriers which would make it possible to sell beer in plastic bottles.

Another example I gave at the EuroNanoForum was that we managed to use these nanomaterials for transferring heat more efficiently, for example in F1 (Formula One) components. You can really think about many, many different things.

Republished on with permission of Horizon Magazine.   (© Steve Gillman / Horizon Magazine)

More information


  1. Read what our members say about AcademiaNet.

No more excuses!

  1. Please download the brochure "No more excuses" and read more about female experts in Europe, and about AcademiaNet.


  1. Studying the molecular clockwork

    This year's Nobel Prize for Medicine and Physiology went to three chronobiologists: Michael W. Young, Michael Rosbash and Jeffrey C. Hall. The award has put a spotlight on an exciting, yet rarely discussed, field of research. We spoke with Professor Martha Merrow from the Ludwig Maximilians University of Munich, who researches circadian clocks in different organisms. She told us about the inner clock of cells, how chronobiology could help us live healthier and the problem some individuals' chronotype.

  2. 24 AcademiaNet members receive ERC Consolidator grants

    This year's call sees more female recipients than last year, and nearly a quarter of them are AcademiaNet members.

  3. "Even the best antiviral treatment is not a cure"

    On 1 December 2017, the 30th World AIDS Day took place to raise awareness of one of the most destructive epidemics in human history. Despite major advances in HIV treatment in the last decades - which have greatly improved the life expectancy of infected individuals - the disease is far from being eradicated. Professor Marie Larsson from Linköping University in Sweden studies how HIV affects the cells of the immune system and renders individuals more vulnerable to infections by other viruses.

  4. We do not fight when we deal with science

    ‘We are scientists but we are still humans and we cannot close our eyes or ears to what’s happening around us.’ - Dr Gihan Kamel

  5. "Science is for everyone"

    Anna-Lena Scholz interviewed AcademiaNet project manager Eva Roth for her column "3 ½ questions" in the "Chancen Brief" of the German newspaper "Die Zeit". We translated the exchange.