"We're looking into the biology of tumours"

Horizon interview with Dr. Daniela Thorwarth about personalised medicine

7. 9. 2016 | Personalised medicine is not only about finding better therapies, although this is a crucial aspect, but also about saving people from unnecessary or ineffective treatment, according to Dr. Daniela Thorwarth from the University of Tübingen, Germany. Thorwarth is developing personalised treatments for head and neck cancer.
Daniela Thorwarth is a full professor for Biomedical Physics at the University of Tübingen. Following her graduation in physics at the University of Stuttgart, Germany and the Ecole Centrale Paris in France, she obtained her PhD in Biomedical Physics from the University of Tübingen. Currently Daniela Thorwarth is head of a Biomedical Physics research group at the Tübingen University Hospital, focusing on different aspects of biologically individualised radiotherapy, including methods for integrating functional imaging into radiotherapy treatment. This group is funded with an ERC Starting Grant.

Currently there's a buzz around personalised medicine, but what specifically are we talking about?
Dr. Daniela Thorwarth
Bild vergrößern
Dr. Daniela Thorwarth
Dr. Daniela Thorwarth: Personalised medicine, in my view, is diagnosis and treatment of a disease in a way that is very much focused on the patient's specific needs. We can use all the new technologies we have in terms of gene sequencing, gene analysis and analysing the output of genes in the body, to better understand the characteristics of a patient's disease, learn about where this disease really originates from and what would be the best approach to cure or treat it.
We also have other methods that can be very helpful for personalised strategies, which may be not as demanding as genetic approaches. Molecular imaging – where we can view biological processes at the molecular level - is one way, but also a very new approach is in sensor systems. You implant a small chip into a patient that monitors a variety of factors like blood pressure, heart rate etc, and you can have early indicators of disease at very early stages where the patient himself does not feel ill at all.

There is also a component of personalised medicine going much more into the prevention aspect. On a very personalised basis, recommendations can be made on how to prevent certain diseases.

So the idea is that by using a treatment suited to that particular person and their disease, we can increase cure rates?

Yes, but our hope for the patient is also that before we decide on his or her individual treatment option, we can stratify those patients into different risk groups. One group is the patients where we think an intense treatment option would give them a higher probability of being cured. But another group could be those patients who at this moment probably cannot be cured, to save them from unnecessary treatments with intense side effects.

You're specifically looking at head and neck cancer as part of the bio-iRT project, funded by the EU's European Research Council. Why this type of cancer?

We chose to study head and neck cancer because it is a model system. It is not one of the biggest cancer incidences in Europe but it is a very aggressive type of cancer and quite a part of the population is suffering from it. This is a type of cancer where, at this very moment, combination therapies are extensively used in the clinics, so these are patients who get focused radiotherapy in parallel to high-level chemotherapy. And still we see that even with this state-of-the-art therapy we can only cure half of these patients. And we essentially do not know why.

How are you going about identifying a personalised treatment?

We are looking into the biology of those tumours with genetic approaches but also with molecular imaging, where we use traceable substances known as biomarkers that interact chemically with the tumour to see what is happening on a very small scale. Molecular imaging has the advantage that we can use it in the clinics non-invasively, so with no pain or harm for the patients. We are studying this disease in a very basic research setting with modern hybrid imaging technologies, which combine different types of imaging techniques to get a really clear picture of what's going on. Then we are analysing the tumours with genetic approaches in order to find correlations or patterns that might be driving the resistance of a patient's tumour to therapy.

This is where we see a big chance for radiotherapy. Radiotherapy has the big advantage that it is a local therapy option, so we can focus the radiation dose on the tumour and increase the dose to the resistant parts of the tumour. We have started a clinical trial in Tübingen using a very basic approach and some imaging biomarkers identified in earlier studies, to test this approach in a personalised manner, increasing the radiation treatment dose to more resistant areas inside the tumour which were identified with this imaging biomarker.

How long will it be before this type of approach is commonplace?

I think that our goal should be – and this is our specific goal for the department in Tübingen – that within the next five to ten years we should be able to treat a quarter of our patients with personalised strategies.

Can personalised medicine be used to treat any type of disease or just cancer?

It is applicable to all diseases. Here at Tübingen we have founded a centre of personalised medicine that covers cancer of course, but also infectious diseases and haematological and brain diseases. It is a whole spectrum where personalised medicine can be used and can be useful.

What's the biggest challenge?

I think the challenging points are still very much in the basic field. We still don't know for a lot of diseases what the key factors will be that in the end drive the personalised diagnosis and other therapy approaches. In my project I try to find key factors that will distinguish if a cancer patient can be cured or not, or if we need personalised therapy options. The diagnosis will be personalised, but also then based on that there is a second step, the therapy.

What I would like to see next is to really make steps into making personalised medicine happen, to create teams with expertise - from basic scientists to clinicians, and from different fields - in order to start studies, prove that the concept is working, and that we can really help the patients to a better quality of life and also get better cure rates in different diseases.

Courtesy of Horizon, The EU Research and Innovation Magazine, by the EU Commission
  (© Horizon Magazine)


  1. Read what our members say about AcademiaNet.

No more excuses!

  1. Please download the brochure "No more excuses" and read more about female experts in Europe, and about AcademiaNet.


  1. SNSF will run AcademiaNet

    More women in scientific leadership positions - this is the goal of AcademiaNet, the European database listing outstanding women researchers. As of January 2020, it will be run by the SNSF.

  2. AcademiaNet at a crossroads – a look back and future perspectives

    The Robert Bosch Foundation (RBS) has founded AcademiaNet and funded the platform from the beginning. They now have to end the funding at a time when AcademiaNet starts to gain momentum. We spoke with Dr Katrin Rehak-Nitsche, Senior Vice President for Science and Research at the RBS, about the situation.

  3. "We are missing out on a lot of potential…”

    Interview with AcademiaNet member Eva-Maria Feichtner

  4. Narcissism: not only an individual failing

    Interview with AcademiaNet member Agnieszka Golec de Zavala

  5. Film and television tell children who can be scientists

    Roles on the screen largely reinforce the message that scientists are white men.